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ABSTRACT

Re—~analysis of SALMON and STERLING initial short-period compressional
and surface waves at station PLMS (Poplarville, Mississippl) at a distance
of 27 km shows a SALMON/STERLING compressional phase spectral ratio tending
to a ratio of only 17 at 25 Hz, in agreement with the theoretical calculations
of Patterson (1966) and of Healy, King, and O'Neill (1971). The spectral
ratio for the surface waves tends to a ratio of approximately 100 at 25 Hz,
in agreement with spectral ratios previously reported by Springer, Denny,
Healy, and Mickey (1968), whose data window at PLMS was large enough to consist
pradominantly of surface waves. The fact that the ratio varies as a function
of phase suggests that decoupling varies as a function of take-off angle, with
the least decoupling occurring at high frequencies for the most steeply depar-

ting rays.

Another topic discussed is the apparent variation in decoupling as
defined by the ratio of STERLING/STERLING HE. The variation in this ratio is
determined to be explainable by the variation in shot point between these two
explosions, and not necessarily by a variation in decoupling as a function of

azimuth,
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INTRODUCTION

The 5.3 + 0.5 kiloton (Werth and Randolph, 1966) explosion SALMON was
detonated at 1600 GMT on October 22, 1964 at a depth of 827,8 meters at
location 31.1421°N, 89,5701°W. The shot created a stable cavitv of approxi-
mate radius 17 meters. At 1215 GMT on December 3, 1966 the 0.38 kiloton
explosion STERLING was detonated at the center of this cavity., The purpose
of this experiment was to test the theory of decoupling; that the seismic
signals of the smaller explosion would be smaller than they would have been:

without the large cavity.

Figures 1 and 2 show relevant details of the shots' environment.
Further details on SALMON may be found in a special edition of the Journal
of Geophysical Research containing a lead article by Werth and Randolph (1966).

Springer et al.(1968) (herea:ter referred to as SDHM) produced a paper
comparing the results of the experiment to the predictions of theory, as did
Murphy (1969) and Healy et al. (1971). Although each of these authors noted
that the decoupling efficiency decreased with increasing frequency on both
theoretical and experimental grounds, this fact did not receive a great deal
of attention because if results were scaled to yields of interest, the fre-
quencies of less efficient decoupling lay in the range 3-10 Hz, generally

beyond the range of detectibility for teleseismic observations.

However, in recent years the possibility has arisen that observations may
be allowed within the USSR at regional distances from salt deposits where
evasion of a comprehensive test ban treaty might be attempted by means of

decoupling in salt.

Werth, G. and P. Randolph (1966). The SALMON seismic expetiment, J. Geophys.
Res, 71, 3405-3414.

Springer, D., M. Denny, J. Healy, and W. Mickey (1968). The STERLING
experiment: decoupling of seismic waves by a shot-generated cavity,
J. Geophys. Res., 73, 5995~6011.

Murphy, J. R. (1969). Discussion of paper by D. Springer, J. Healy, M. Denny,
and W. Mickey, The STERLING experiment: decoupling of seismic waves
by shot-generated cavity, J. Geophys. Res., 74, 6714-6718.

Healy, J. H., C. King and M. E. O'Neill (1971). Source parameters of the
SALMON and STERLING nuclear explosions from seismic measurements,
J. Geophys. Res., 76, 3344-3355,

~9-




a
JACKSON
L @ RALEIGH I
D l
A O LAUREL
°
A coLumgia O HATTIESBURG

McCOMB ag e

® Pz ©

o A
: O popLARVILLE
O TOWN [
® USGS p H

O USC & G$ \Q-D % bICAYUNE

A LRSM \ '
___— cuueorr

Figure 1. Location of seismic recording stations observing signals from
STERLING. Flagged locations also recorded SALMON (from Springer
et al., 1969).




LEGEND
E= LIMESTONE TJ SANDSTONE
N SHALE AND CLAY 22 ANHYDRITE
iﬂlouo 1b65$p
NSJ
% 0 e
Evﬂolw
—X5 2 'ow
= 1A
Fo=
=== T
> “. ."\: ; -
- ~ -t
2
Oo m
\ <0p m
HE SHOT - 60y
SALMON /STERLING ~— e "
~ \\N %
SHOT HORIZON (831 m)

Source locations of STERLING rwnclear and HE shots (from Springer

Figure 2.
et al., 1968).

-ll=




So important is this point that it seems to justify a re-examination of
the original raw data to see if a more critical examination than was originally
justified of the signals at high frequencies might not give some fresh in-
sights to the problem.

Characteristics of the Data

In Figure 1 we see a plan view of the stations recording the STERLING
event. We see that five stations recorded both SALMON and STERLING. The
three United States Geological Survey (USGS) stations were at Rayleigh,
Poplarville, and Picayune; we refer to them in this report as stations
RLMS, PIMS, and PYMS, respectively. The station distances are 112, 27 and 69
kilometers, respectively. Through the courtesy of J. Healy and M. O'Neill
of the USGS, we received the original field analog tapes for these two events.
We made an analog copy of all six tapes (one for each event at each station)

and then digitized the copy at 100 samples per second.

Two other stations also recorded data from both SALMON and STERLING
as indicated by the flagged open circles in Figure 1. These are the USC&GS
stations 10-South and 20-South at distances of 16 and 32 kilometers, respec-
tively., As of the writing of this report, we have found that this data is
avallable from John Blume Associates in Las Vegas, Nevada; care of Mr.
Jerry Kralik, and we have sent an analog tape to him requesting that he

copy the original onto it.

Figure 2 shows a cross-section of the salt dome in which the explosions
were detonated. Also shown in this view is the shot point for the high
explosive shot referred to later in this report as the STERLING CAL or
STERLING HE shot.

Figure 3 shows response curves for the systems which recorded data
presented in this report. The LRSM response is displacement whereas the
USGS and USC&GS responses are velocity. Figure 4 is the USGS displacement
response and we see that it peaks at approximately 30 Hz. We shall see in
this report that an even sharper high-frequency response should have been
installed in order to keep the high-frequency portion of the SALMON signal
above system noise at PLMS, RLMS and PYMS,

-12-
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In Figure 5 we see the raw data and calibrations at PLMS, the most crucial
station. SDHM point out that channels 2 and 5 should not be used for compari-
son of SALMON and STERLING because different instruments were used on these
channels for SALMON. Inspection of figures in the field report of Borcherdt
et al. (1967) indeed shows that these channels have high-frequency noise in
front of the signal.

When we plotted out the SALMON P wave signals for PLMS, channels 4 and 6,
we noted several data spikes. Upon re-examination of the Borcherdt et al.

(1967) plots we noted that these spikes were also visible. The effects of

these spikes may be seen in the SALMON signal spectra presented by Borcherdt
et al. (1967). Since these spikes will result in a high high-frequency signal
level (leading to an overestimate of decoupling efficiency) we have chosen not

to analyze these channels. This leaves only channels 1 and 3 at PLMS.

In a broad-band sense we see from Figure 5 that the spectral ratio for
f < 10 Hz is approximately 1000. From Figure 6 it is apparent that STERLING
has proportionally more high~frequency than does SALMON., We can see also in
Figure 6 that at low frequencies SALMON and STERLING have similar waveforms

whereas HE is different. This is presumably a propagation effect.

Figure 7 from station 10-south shows the same qualitative features as

does PLMS, and emphasizes the importance of acquiring these data.

Figure 8 shows the average spectral ratio determined by SHDM.( For reasons
to be discussed later in this report, we believe that the ratio of approxi-
mately 100 at 20 Hz is too large. One reason for this may be the spikes on
channels 4 and 6 noted above. Another is the fact, as we shall show, that
at least in the data as we sec it now for SALMON, only channel 1 of PLMS has
S/N > 1.0 for f > 12 Hz. At stations RLMS and PYMS for SALMON no channel
has S/N > 1 for £ > 12 Hz. Thus the ratio seen in Figure 8 would be biased
upward for f > 12 Hz., Finally, another source of bias is the fact, which we
will see, that the surface waves show more efficient decoupling at high
frequencies than do the compressional waves. Assuming that the compressional
waves are of principal interest, the fact that the window used by Borcherdt
et al. (1967) from which SDHM took their data was 12 seconds long and at

Borcherdt, R. D., J. H. Healy, W. H. Jackson and D. H. Warren (1967). Seismic
measurements of explosions in the Tatum salt dome, Mississippi Technical
Letter Number 48, United States Geological Survey.
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Sample broadband recordings made by the USGS at Poplarville., Cali-
bration signals are shown at the left of each trace. The relative
magnification to SALMON of trace 1 for STERLING is about 690 and
for HE is 1250, SALMON traces 2 and 5 are from different instru-
ments, which were not duplicated on STERLING. Traces 7 and 8 of
the STERLING and HE records are from horizontal component seismo-
meters (from Springer et al,, 1968).
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of SALMON. The relative magnification is shown in the traces
(from Springer et al., 1968).
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Ratio of SALMON spectra to STERLING spectra., The ratios shown for
a station are the average for that station. The solid line is the

smoothed average of all five station averages (from Springer et
al., 1968).




PLMS, 10S, and 20S included surface waves, will have biased the ratio from

that appropriate for compressional waves.

To establish the calibrations for these data we have used the microvolts

per millimicron scale on Figure 4 from Borcherdt et al. (1967), and have
assumed that the high amplitude 10 Hz calibration signals which we digitized
from the analog tape had the amplitudes in microvolts as indicated on plots
similar to Figure 5 which we found in Borcherdt et al. (1967). We had to

rely on these plots rather than original field logs because government sources

have told us that these logs are difficult to retrieve from government storage.

For consistency with standard teleseismic regional practice the time
series and spectral amplitudes are reported relative to 1 Hz even though the
calibration frequency is at 10 Hz. To obtain true ground motion at any
frequency divide by the relative response as seen in Figure 4 between the

observed frequency and 1 Hz.
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ANALYSIS OF SALMON/STERLING SPECTRAL RATIO AT POPLARVILLE,
RAYLEIGH, PICAYUNE

Figure 9a Bhows the most crucial data available relevant to the question
of SALMON/STERLING decoupling. The first trace is 2.5 seconds of the noise in
front of the signal. As can be seen, a 10% cosine taper has been applied to
the data, and the resulting amplitude spectrum is seen below in the logarith-
mic plot as a dotted line. We note that the noise 1s dominated by peaks at 1,
12, and 25 Hz.

The second trace in Figure 9a is the initial P signal from SALMON,
tapered in the same way as the noise. The spectrum is seen below in logar-
ithmic and linear amplitude plots as a solid line. We see that S/N > 1 from 0.5
Hz to 23 Hz, and possibly in a small interval from 30 Hz to 33 Hz.

Figure 9b is the same as Figure 9a except that it is from channel 3 which,
as we saw above, is the only channel besides channel 1 which we may use at PLMS
for a spectral ratio between SALMON and STERLING. Comparing the plots,
we see that the noise in the 12 to 20 Hz band is much higher for channel
3 than for channel 1. This is, of course, immediately apparent by compari~
son of the raw noise waveforms. 1In apparent disagreement with this, the noise
spectra presented by Borcherdt et al. (1967) show much greater noise on
channel 1; however, the nature of their channel 1 noise spectrum is that of a
spike or step in the data, suggesting that some error crept into the data
processing. In the Borcherdt et al. (1967) signal spectra for clannels 1
and 3, we see an increased high-frequency level on chanmel 3, which in our

analysis we trace to the increased high-frequency noise.

In any event, our analysis suggests that channel 3 adds no information
to the spectral ratio beyond 12 Hz and so we shall ignore it in subsequent

analysis, leaving the analysis to rest completely on the channel 1 data.

In Figure 10 we see the noise and signal waveforms and spectra for
STERLING P wave at PLMS. If one overlays the SALMON and STERLING signals,
it is easy to see that SALMON is similar to a low-passed version of STERLING.

This is also suggested by the spectra: one sees in the logarithmic plot that

the heavy solid line, which is the SALMON spectrum plotted at a scale of
1/1000, closely parallels the STERLING spectrum up to 4 Hz, where it then
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Salmon P wave signal and noise at PLMS. (Channel 1)

Figure 9a. pper trace is noise in front of signal, lower trace is signal.
Units of millimicrons at 1.0 Hz. Data sampled at 100 sps. Upper
spectrum is square root of power spectrum with units millimicrons/ |
(Hz)1/2, Solid line is signals, dashed line is noise. Lower spec=- |
trum is the same c¢xcept with a linear rather than logarithmic ]
vertical scale, and without the noise spectrum,
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Figure 9b.

SALPLMS3 025
39879 3
58608 6

100000.0

mu/(Hz)y'

001

i0
50 H:

Salmon P wave signal and noise at PLMS. (Channel 3)

Upper trace is noise in front of signal, lower trace is signal.
Units of millimicrons at 1.0 Hz. Data sampled at 100 sps. Upper
specf;gm is square root of power spectrum with units millimicrons/
(Hz) . Solid line is signals, dashed line is noise. Lower spec-
trum is the same except with a linear rather than logarithmic
vertical scai~, and without the noise spectrum,
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Figure 10. Upper trace is noise in front of signal, lower trace is signal.
Units of millimicrons at 1.0 Hz. Data sampled at 100 sps. Upper
spectrum is square root of power spectrum with units millimicrons/
(Hz)1/2, Solid line is signal, dashed line is noise. Lower
spectrum is the same except with a linear rather than logarithmic
vertical scale, and without the noise spectrum channel 1. The

maximum amplitude in parentheses is appropriate for the SALMON
spectrum. *




departs. (This, of course, immediately suggests that the corner frequency for
SALMON is in the neighborhood of 4 Hz.)

The space between the two solid lines in Figure 10 represents the spec-

tral ratio between SALMON and STERLING, and will be used in subsequent figures.

Figures 11 and 12 are analogous to Figures 9a and 10 except that they are
for the surface wave or "Lg" signal, and utilize a 5-second instead of a 2.5
second window. 1In both the time and spectral domains, we can see that there
is not as much extra high-frequency in STERLING for Lg as there was for P,
showing that at high frequencies the decoupling is more efficient for Lg than
for P, (This is obviously not an attenuation effect, since for every phase

both paths are the same and attenuation cancels out.)

It seems well worth remarking that for STERLING, S/N >> 1 for both phases
all the way to 50 Hz; but for SALMON, which had amplitudes 10-1000 times
greater, S/N > 1.0 only for f < 12 Hz. This is due to the more rapid fall-off
of the SALMON source spectrum which, as a result, dips below the system noise.
If the SALMON experiment were to be repeated it would be necessary either to

use a system with greater dynamic range or to peak the system more sharply.

Figure 13 and 1% are analogous to Figures 9a and 10 except that they are
for the station RLMS at a distance of 112 km. Even at this distance note that
the STERLING signal is well above the noise from 2 to 50 Hz, whereas SALMON
again dips into the system noise. In Figure 14 we see that the heavy 'SALMON"
spectral line lies slightly below the STERLING spectrum. For the Lg window
we see the same amplitude ratio. For Lg, however, S/N > 1 only for f < 5 Hz.
There is much more high frequency in the STERLING P wave relative to SALMON P

than bigh frequency in the STERLING L_, relative to SALMON Lg...just as for PLMS.

g
We have not presented the data from PYMS because suitable calibrations

were not produced in the A/D process; however, examination of the signal and

noise spectra shows that the situation is very similar to that at RLMS, i.e.,

the SALMON signal is lo- 1 system noise around 12 Hz.

Figure 15 summarizes the data analysis. The solid lines have been pro-
duced by drawing smooth cuves through the data in Figures 10 and 12, picking
off representative differences between the curves and plotting them in

Figure 15. Then the curves are drawn in by hand. The stars are taken from
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Figure 1l Upper trace is noise in front of singal, lower trace is signal.
Units of millimicrons at 1,0 Hz. Data sampled at 100 sps., Upper
spectrum is square root of power spectrum with units millimicrons/ X
Mz) 172, Satid line is signal, dashed line is noise. Lower T
specetrum is the same except with a linear rather than logarvithmic f
vertical scile, and without the noise spectrum channel 1, 1
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Sterling “‘Lg’’ signal and noise at PLMS.

Figure 12. Upper trace is noise in front of signal, lower trace is signal.
Units of millimicrons at 1,0 Hz. Data sampled at 100 sps. Upper
spectrum is square root of power spectrum with units millimicrons/
(Hz)y /2. Solid line is signal, dashed line is noisc.  Lower
spectrum is the same except with a linear rather than logarithmic
vertical scale, and without the noise spectrum channel,

Heavy solid line on logarithmic plot is taken from the previous
plot for SALMON where S/N - 1.0, The maximum amplitude in
parentheses is appropriate for the SALMON spectrum,
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Saimon P wave signal and noise at RLMS.

Fipure 13, Upper trace is noise in front of signal, lower trace is signal.
Units of millimicrons at 1.0 Hz., Data sampled at 100 sps.  Upper
spectrum is square root of power spectrum with units millimicrons/
(hz) /2, Solid line is signal, dashed line is noise. Lower
spectrum is the same except with a linear rather than logarithmic
vertical scale, and without the noise spectrum channel 1.
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Sterling P wave signal and noise at RLMS.

Figure 14. Upper trace is noise in front of signal, lower trace is signal,
Units of millimicrons at 1.0 Hz. Data sampled at 100 sps. Upper
spectsum is square root of power spectrum with units millimicrons/
(Hz) l/2_ Solid line is signal, dashed line is noise. Lower
spectrum is the same except with a linear rather than logarithmic
vertical scale, and without the noisce spectrum channel 1.

Heavy solid line on logarithmic plot is taken from the previous
plot for SALMON where S$/N > 1,0, The maximum amplitude in
parentheses is appropriate for the SALMON spectrum,




SPECTRAL AMPLITUDE RATIO (SALMON/STERLING)
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Figure 15. Spectral amplitude ratio of SALMON/STERLING, as seen for the P

and "Lg" signals at PLMS and RLMS, all at channel 1.

Arrows

indicate lower limit for this ratio determined from the ratio

of SALMON signal to the noise at the time of STERLING as deter-
mined at station JELA, and the X represents a similar measurement
The "H" symbols give the low and high frequency
limits determined from "Sharpe" models fitted by Healy et al.

as made at CPO,

(1971).
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SDHM from the figure reproduced in our TFigure 8. The vertical arrows repre-
sent a SALMON signal to STERLING noise spectral limit at JELA at A = 243 km
which is discussed in more detail later in this report. The single CPO
point was derived by measuring the period of the maximum P-wave film ampli-

tude for SALMON, and then finding the largest noise pulse of that period in a




SDHM from the figure reproduced in our TFigure 8. The vertical arrows repre-
sent a SALMON signal to STERLING noise spectral limit at JELA at A = 243 km
which is discussed in more detail later in this report. The single CPO
point was derived by measuring the period of the maximum P-wave film ampli-

tude for SALMON, and then finding the largest noise pulse of that period in a

-5, +30 second window around the expected STERLING arrival time.

We see that the JELA and CPO limits do lie below the observed ratios as
they should, and that at high frequencies the P wive ratio is lower than the
Lg or SDHM ratios. The agreement between SDHM ratios and Lg could simply be
due to the fact that the spectra computed by Borcherdt et al. (1967) which SDHM
used were from a 12 second window which at PLMS and 108 and 205 included L .
The various noise contamination problems discussed above would also tend to

bias the spectral ratio high.

The fact that the P ratio is below the surface wave ratio suggests that
the more steeply departing rays, which contribute to P, are less efticiently
decoupled than are the more horizontally departing rays which go to make

up the surface waves.

Healy et al. (1971) analyzed the SATMON-STERLING data in a slightly

different manner than SDHM, computing spectra only of the first 5 seconds

of data, thus eliminating problems with Lg' These spectral ratios were then
fitted with a theoretical expression for the spectral ratio resulting from

a pressure step, P, on a spherical cavity of radius a, with the two values of
pressure and two values of radius adjusted to fit the data. The resulting
pressure ratio was 4,15, and the equivalent elastic cavitv was 29 meters for
STERLING and 169 meters for SALMON. The low-frequency limit of this theoret

. R . 3 . c o
ical ratio is the ratio of a P, and the high frequency iimit is aP. These

limits are indicated on Figure 15 by the letter H and we see that they are in

good agreement with our spectral ratio.

In Figure 16 we have cube-root-scaled the compressional ratio to several
other yields, the requirement for validity is that a cavity be created at a
depth of 830 meters in salt, and that then a shot of relative yield 0.38/5.3
be detonated at the cavity center. With this condition one may measure the
amplitude from the large signal, and then divide by the observed spectral 1

ratio to predict the observed amplitude from the decoupled explosion. Note

A i’ s
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Figure 16. P_ SALMON/STERLING ratio from Figure 15 cube-root scaled at three
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creating cavity, measure spectral amplitude at any desired
frequency. Then division of this amplitude by the curve value
at that frequency will give the expected amplitude of the decoupled
shot. This expected signal amplitude may be compared to the
ambient noise at the site,
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that this approach by-passes the concept of the degree of decoupling, and of

the reduced displacement potential.

In Figure 17 we see that there was poor agreement at high frequencies
between the SDHM observed SALMON/STERLING spectral ratio and the theoretical
calculations of Patterson (1966). However, note that the P ratio from
Figure 15 would be in excellent agreement with a type of salt for STERLING
between weakened salt I and very weak salt. Thus our observed ratio is in
good agreement not only with the empirical-theoretical formulas of Healy et

al. (1971) but also with the earlier theoretical calculations.

If it is desired to calculate the classical decoupling ratio as a func-
tion of frequency, then the ratio in Figure 15 must be multiplied by the
spectral ratio of an 0.38 kiloton tamped shot to the 5.3 kt SALMON explosion.

The spectrum of 0.38 kt could be obtained from the spectrum of SALMON
by cube-root scaling. However, to obtain the SALMON spectrum we are not,
unfortunately, free to use the instrument corrected displacement spectrum at
PLMS, JELA, etc., because such non-scalable effects as pP, absorption, and
crustal interference complicate the picture. Thus, to obtain a SALMON
source spectrum out to 25 Hz, we would be forced to use the free-field

data.

Patterson. D. W. (1966). The calculation sensitivity of a model describing
the response of a nuclear formed cavity: The STERLING event, Lawrence
Radiation Lab. Report UCID-5125, Livermore, California.
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ANALYSTS OF SALMON/(STERLING NOISE) SPECTRAL RATIO AT JELA, (EUAL, EU2AL)
In the preceding section we have seen data from stations at 27 and 112
km from STERLING and SALMON. The next closest stations for which we have
data are those at JELA and (EUAL, EU2AL) which were at distances of 243.0
and (242.2, 242.9) kilometers, respectively (see Figure 18). At neither
of these stations was there clearly detected a signal from STERLING; however, we
shall see that some useful limits on the spectral ratio may be obtained from

the (SALMON signal)/(STERLING noise) ratio.

Figures 19 and 20 show the SAIMON data at JELA and EUAL. (We note that for
the initial 7 seconds the vertical component is much larger than the radial
or transverse, showing that the signal is arriving at near vertical incidence.
This suggests that if a crustal model could be developed for source
and receiver, then its effects might be taken out of the data and a SALMON
source spectrum recovered, considering, as we shall see, that valid data

extends well above 10 Hz on the analog tape.)

Figure 21 shows the STERLING P window at JELA. From Figure 19 we
deduce that the expected arrival time for Figure 21 would be 12:15:37.2,
and that the maximum detectability would be on the radial channel between 12:15:47
and 12:16:05. 1In fact, inspection of the STERLING radial trace does reveal
a suggestion of a signal between 12:15:58 and 12:16:05.

Concentrating, however, on the vertical trace we see in Figure 22 the
noise and signal for SALMON and the corresponding spectra. (Note the
remarkable parallelism between the noise and signal spectra. That this is
not an artifact of the digital data processing may be seen by the fact that
the time domain noise (system noise) is similar in character to the SALMON

signal itself.

Also in Figure 22 may be seen the STERLING P-window noise taken from
the spectrum in Figure 23. The interval between the SAILMON signal spectrum
and the STERLING noise, is the source of the arrows plotted in Figure 15,
In that figure it is noteworthy that the arrow at 2.6 Hz presses just below
the observed ratio of 1000, a fact in good agreement with the marginal de-

tection on the radial trace in Figure 21.
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Figure 22. P-wave signal and noise of SALMON as seen at station JELA.
Vertical component. Amplitude in mu. Spectrum is square root
of the power spectrum, Middle dotted line is noise spectrum.
Lower dashed line is noise from corresponding signal window of
STERLING.
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Figure 23, P-wave signal window and noise window of STERLING as seen at
station ITELA. Vertical component. Amplitude in muy., Spectrum
is square root ol the power spectrum,
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Figures 24 and 25 give the SALMON Lg signal spectrum and the corresponding
window for STERLING., We note that the SALMON Lg is more sustained than the
P wave, but at abouvt the same amplitude, so that we are not surprised in view
of the marginal detection status at JELA to see that the Lg window for STER-
LING (Figure 25) has a higher amplitude than the P window (Figure 23); the
signal may well be hidden in the noise. However, E. Smart has attempted to
determine the back azimuth to STERLING using his Lg processor (Smart, 1977)
on this window. The results were inconclusive in that, although a correct
back azimuth was determined, runs of the program in the time window before
the sigral arrival also gave the same azimuth, suggesting that the ambient
noise at the time had the nature of a signal propagating from the direction
of the shot point.

Were a limit to be determined from Figure 24, its maximum would be
about the same as that determined from Figure 22; it is a factor of ~ 1000
at 2.9 Hz. If the Lg is actually present in this window, then this is
practically a true signal ratio, and would fit just at the appropriate
place with respect to the Lg curve in Figure 15.
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Figure 25. L -wave signal window and noise window of STERLING as seen at
sBation JELA. Vertical component. Amplitude in mu., Spectrum
is square root of the power spectrum.
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ANALYSIS OF POSSIBLE "ANOMALIES" IN STERLING/STERLING CAL AMPLITUDE RATIOS

Some controversy has arisen over the variation at different stations
in apparent decoupling between STERLING and the "STERLING CAL," a high-
explosive shot detonated 1142 feet from the STERLING shot and at the same
depth. I feel that such variations can be explained by the difference in
shot points, but herewith we do present the data. Figure 26 from TN-67-5
shows the STERLING signal at LDMS (all station locations may be seen in
Figure 18), and Figure 19 shows the STERLING CAL signal at the same station.
The amplitude ratio near 2 km/sec on the radial component at 1.4 Hz is 5.0.
In Figure 28 this number is plotted together with the corresponding ratios
at the other three LRSM stations at a distance of 70 km. We see that there
is substantial variation in the ratios, which might be due to an azimuthal
variation in decoupling, but which may be more economical.; explained as
difference in propagation due to the two shot points being in different

locations.

The STERLING CAL shot was 2 tons of high-explosive. If we assume that
one ton of high explosive is equivalent to one ton of nuclear explosive,
and assume no spectral scaling, (this would be valid if the corner frequency
were > 5 Hz for both events) then from the time domain measurements we may
compute the apparent decoupling ratios in Figure 29. The logarithmic average
of these should average out propagation fluctuations to some degree and is

> 76, in reasonable agreement with the numbers derived by SDHM,

Figure 30 gives the amplitude ratios which could be determined using

the P phase on the vertical component. Only limits could be obtained.

An analysis similar to that performed for the STERLING CAL has been
performed using plots from the Geotech Technical Report (Johns, 1970) for the
event HUMID WATERS which was detonated precisely at the STERLING shot point.
The results of these two analyses are summarized in Figure 31. We see that

the observed measurements for the STERLING/STERLING CAL scatter much more than

Johns, Frank H. (1970). Preliminary report on long range seismic measure-
ments participation in project MIRACLE PLAY - HUMID WATERS, TR-70-16,
Teledyne Geotech, Garland, Texas.
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Time domain amplitude ratios from the radial components of

STERLING, STERLING CAL and HUMID WATERS. Amplitudes measured
within 5 seconds of the STERLING maximum except for the point
marked with the asterisk where the maximum for the STERLING CAL
was later than the 5 second window,
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do the observed measurements for STERLING/HUMID WATERS. Unfortunately, however,
LDMS is the only station for which, within 5 seconds travel time of the maximum
motion near 2 km/sec for SALMON, there is also a clear signal for STERLING CAL
and for HUMID WATERS. If, however, we use the maximum motion anywhere in the
signal, it is possible to get a signal for HUMID WATERS AT MBMS, and to
explicitly see the greater range in the CAL data as compared to HUMID WATERS.
The necessity to look in a different time window for the maximum signal re-
flects the fact that the STERLING CAL signal is different in shape from that

of STERLING or of HUMID WATERS, which again reflects the fact that the shots

are detonated at different locations.

SDHM have also pointed this out. Figure 6 shows that when filtered in
the band 1-2 Hz, the band of interest in this discussion, then SALMON and
STERLING at the same shot point have nearly identical waveforms which are

quite different from that of STERLING CAL (HE STERLING).

Figure 32-35 are presented with the thought that future workers may
find them of some use. Here we have the noise and signal windows and
corresponding spectra for STERLING for the 2 km/second pulse at the four
innermost stations in Figure 1l1. The dashed line in each figure is the
signal spectrum of the STERLING CAL for the frequency range in which S/N > 2.
We see in general that in the spectral domain we see the same amplitude ratio
as in the time domain. There is some indication in the LDMS data that the

spectral ratio is greater at 2 Hz than at 4 Hz.
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Figure 32. Noise and signal amplitude and spectra from radial component of
STERLING at LDMS in the time window surrounding 2 km/sec. The
dashed line represents the caorresponding signal spectrum from
STERLING CAL where the $/N is greater than 2.0,
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Figure 33, Noise and signal amplitude and spectra from radial component of

STERLING at MBMS in the time window surrounding 2 km/sec. The
dashed line represents the corresponding signal spectrum from
STERLING CAL where the S/N is greater than 2.0.
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Figure 34. Noise and signal amplitude and spectra from radial component of
STERLING at PCMS in the time window surrounding 2 km/sec. The
dashed line represents the corresponding signal spectrum from
STERLING CAL where the S/N is greater than 2.0.
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Figure 35. Noise and signal amplitude and spectra from radial component of
STERLING at LLMS in the time window surrounding 2 km/sec. The
dashed line represents the corresponding signal spectrum from *
STERLING CAL where the S/N is greater than 2.0.
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SUMMARY AND DISCUSSION OF POSSIBLE FURTHER RESEARCH

Analysis of data from PLMS and RLMS has verified the low-frequency
SALMON/STERLING spectral limits of SDHM and of Healy et al. (1971). For
high frequencies (25 Hz) the spectral ratio declines to a value near 17 as
contrasted to the value of 100 reported by SDHM but in agreement with the
trends predicted by code calculations at high frequency by Patterson (1966),
and in agreement with the high-frequency limit of the ratio of two model
spectra fitted to the data by Healy et al. (1971). When cube-root scaled
to larger yields, this result predicts that it will be easier to detect the
high frequencies from P waves from decoupled explosions than has been

thought possible heretofore.

For surface waves the decoupling at high frequencies is the same as that
found by SDHM. Springer used spectra computed by Borcherdt et al. (1967) and
by USC&GS workers so that to some extent this is an accidental result be-
cause it would appear that the high frequency estimates of Borcherdt et al.
(1967) were badly biased by spikes and system noise, in addition to being
biased by the L _contained in their 12 second windows at stations PLMS. We
do not know the size of the window used by USC&GS for their spectral calcu-
lations at 10S and 20S, but if they also used 12 seconds the spectral ratios

there would also be biased toward the L ratio.

The variation in the STERLING/STERLING HE spectra can be explained by
the variation in shot point between these two explosions, and not neces-
sarily by a variation in decoupling as a function of azimuth. This is
shown most clearly by comparison with the more constant ratio STERLING/

HUMID WATERS, because HUMID WATERS was detonated in the STERLING cavity.
Future work should include:

* Analyze data from stations 10§ and 20S to confirm if possible the
high-frequency results which rest, at present, on the first 2.5 seconds of
SALMON data of channel 1 at PLMS.

+ Analyze as much of the data as possible from the stations in Figures
1 and 18 to determine amplitude-distance curves as a function of distance at

these close ranges.
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+ From an accumulated comprehensive data base to 250 km, extend the
study of the growth of the transverse/radial component of motion as a func-
tion of distance to include frequency and greater distances, (see the previous
work in Figure 6 of Werth and Randolph (1966)). That figure shows that the
peak raw particle radial to transverse velocity ratio for SALMON varied from
10:1 at 1 km to about 1:1 at 30 km. This is a unique data set to examine

for growth of transverse motion which is of importance for discrimination.

+ Investigate the use of SALMON data at JELA, EUAL, and possibly CPO,
for determination of the high~frequency SALMON RDP. Crustal and absorption
effects would have to be estimated and eliminated; however, it may be possible

to do this, yielding a truly "linear regime'" RDP. The crustal effects on the

path to PLMS might well be too difficult to untangle.
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